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Multimode Network Description of a Planar
Periodic Metal-Strip Grating
at a Dielectric Interface— Part I1I:
Rigorous Solution

MARCO GUGLIELMI anD HARRY HOCHSTADT

Abstract —In a recent pair of papers we studied the scattering problem
posed by a plane wave incident at an angle on a plane, periodic, metal-strip
grating at a dielectric interface. In the first paper (Part I) we formulated
the solution to the scattering problem in terms of novel multimode equiva-
lent network representations. The analytical phrasing followed in Part I led
to two Fredholm integral equations of the first kind with singular kernels.
In the second paper (Part II) we presented two approximate solution
procedures for those integral equations that led to four simple and accurate
equivalent network representations for the scattering problem under inves-
tigation. In this paper (Part III) we further this investigation by deriving a
novel rigorous analytical solution for one of the two integral equations
derived in Part 1. We obtain closed-form, rigorous, analytical expressions
for the elements involved in the equivalent network representations de-
rived. Finally, we present the results of 2a number of numerical computa-
tions carried out by using the rigorous equivalent networks developed.

I. INTRODUCTION

N A RECENT pair of papers [1], [2] we presented

novel small-aperture and small obstacle multimode
equivalent network representations for the scattering prob-
lem posed by a plane wave incident on the plane, periodic,
zero-thickness, metal-strip grating at a dielectric interface
shown in Fig. 1. The problem was posed for both TE and
TM incident modes and followed two different ap-
proaches, namely, the obstacle and the aperture approach,
thereby yielding four different formulations. Solutions were
first derived formally [1] in terms of shunt multimode
coupling networks containing a coupling matrix whose
generic elements 4, , were obtained, via an integral rela-
tion, from the solution of four integral equations. It was
further shown [1] that to solve all four problems we only
needed to solve two types of integral equations. These
integral equations were then solved in [2] in the small
argument limit, thereby giving four very accurate and
simple novel multimode equivalent network representa-
tions for the multimode grating under investigation.
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Fig 1. The structure under investigation is a zero-thickness metal-strip
grating at a plane dielectric interface. The excitation is a plane wave at
an angle; both TE and TM polarizations are considered. The ratio
between the period p and the wavelength A, of the incident plane
wave is such that higher propagating modes (spectral orders) must be
explicitly considered.

In this paper, we further this investigation by deriving a
novel rigorous analytical solution for one of the two inte-
gral equations derived in [1], thereby obtaining two rigor-
ous equivalent network representations for the multimode
grating at a dielectric interface shown in Fig. 1. We present
numerical results obtained by using these rigorous equiva-
Ient network representations for TE-mode and TM-mode
incidence for the case in which the same dielectric is
present on both sides of the grating as well as for the case
in which the two dielectric media are different.

The rigorous results derived here, once employed in the
network formulation presented in [1], yield two rigorous
equivalent network representations. These networks, one
for TM-mode and the other for TE-mode incidence, are
valid for an arbitrary angle of incidence, an arbitrary value
of the relative aperture size a /p in Fig. 1, arbitrary values
of relative permittivity e, of the medium on each side of
the grating, and an arbitrary number of propagating higher
modes. They provide very general rigorous multimode
equivalent network representations for the plane, periodic,
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Fig. 2. Using the aperture formulation and TE-mode incident wave, we
derived in [1] this formal network phrasing for the solution of the
scattering problem shown in Fig, 1
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Fig. 3. Using the obstacle formulation and TM-mode incident wave, we
derived in [1] this formal network phrasing for the solution of the
scattering problem shown in Fig. 1.

metal-strip grating at a dielectric interface shown in Fig. 1.
The value of these equivalent network representations lies
in the fact that they can be used as constituent parts of
equivalent network representations of more complex struc-
tures containing gratings of the type shown in Fig. 1.

II. THE EQUIVALENT NETWORKS AND THE RELEVANT
SINGULAR INTEGRAL EQUATION

It is appropriate at this point to recall the results of the
formal rigorous network phrasing derived in [1] for the
scattering problem under investigation. In Figs. 2 and 3 we
show the equivalent network representations derived for
the cases of TE-mode incident wave and aperture formula-
tion and for TM-mode incident wave and obstacle formu-
lation, respectively. The quantities defined in Figs. 2 and 3
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are given by

cm = e )
27 |n|
= - (2)
Jwey P
27|n|
n("";): . (m) (3)
JWMoM, P

2mw
A= [ 1i(2)e/ 2 de (4)

where the coupling coefficient 4, , represents Z,, , in
Fig. 2 if the domain of integration D extends over the
aperture in Fig. 1 (—a/2<z<a/2) or represents Y, , in
Fig. 3 if the domain of integration D extends over the
obstacle and the origin of the coordinate system is shifted
to the center of a metal strip so that —(p—a)/2<z<
(p — a)/2. Note that the element Y™ in (3) is the static
characteristic admittance for TE modes, as defined in [1,
eq. (4)]. The superscript (m) in (1) and (3) takes the value
1 or 2 to indicate the medium to the left of the grating or
the one to the right, respectively.

The unknown function f,(z) in (4) is specified via the
singular integral equation

e = [ 1B (5)

where the same convention is used for the domain of
integration D, and the constant B is given by

2mar R
Y mle Ty ¢ e’
m#0

2w 1 o
e (D1 @ for TM-mode excitation
Jwegp €, + €7
B 27 1 1 o
: TR for TE-mode excitation.
Jopop | 1 By

(6)

III. RIGOROUS ANALYTICAL EXPRESSIONS FOR THE
MULTIMODE COUPLING MATRIX COEFFICIENTS

To derive a rigorous analytical expression for 4,, , in
(4) we must first solve the singular integral equation in (5).
To do so, we first rewrite its kernel in the form

2mam ,
K(z=2z')=1lim ) |m|e ®"e~— (=
Ym0 .

(7)

to aid in summing the kernel in closed form. This phrasing
is in principle equivalent to formulating the integral equa-
tion a small distance § away from the grating in the x
direction and then taking the limit for § — 0. Next, we
substitute (7) into (5) and, integrating by parts, obtain

_ 2n7rz b/z , B
e’ :f £(2) 7
~b/2 .
- j—
p
. | | —8im) A]var(“~~l) ,
clim ), ——e dmle Ndz (8)

-0 m=0 M
together with the condition

fn(zl)l:'=ih/2=0 (9)
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where + b/2 are the end points of the domain of integra-
tion D previously defined. The kernel of (8) can now be
summed in closed form by recalling that [3]

ad 1

—8&m o;
Y e sinmx=—- ———.
2 cosh8 — cosx

sin x

(10)

Taking the limit for § — 0 we can finally express (8) in the
more convenient form

2nrrr fb/q ,
b/2

Next, using the double angle formulas, we rewrite (11) in
the form

m=1

27
sin —(z—2z')

14 ,
- &', (11)
71— cos —(z~z")

Bpb 7w b

eI, \—] (— )———cot—z-;(x—x)dx (12)

where we have also used the changes of variables

b
z = Ex (13)
! b 4
7'=7x. (14)

Equation (12) is a singular integral equation of the Hilbert
type that has a known inversion formula only for the
special case b/p=1.0 [4]. A new solution is, therefore,
needed in this case since b/p is less than unity. We refer
the reader to Appendix I for the mathematical details of
the derivation of the novel rigorous solution of (12) and
present here only the final results by writing the solution
of (12) in the form

1
F(an) = — G+ IP(an)+Cy]  (15)
—
where
p Bp?
E(an) = 7] 2 tan (am) | 2 (16)
27
7 b o
tan ‘2‘ ;)& =an (17)
3 T b
a—tan—z—; (18)
1 .4 1-¢2
I (an) == § ———g,(a) ds (19)
71 £—n
g,,(a"l) _ ev/2ntan’1an (20)
D,
C1=‘5 (21)
L 0l (an)
D,= dn (22)
/11/1 7 [1+(an)]
D: (23)

f FH an)’| -
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The constant C, in (15) is an arbitrary constant to be
evaluated later. The star on the integral sign in (19) means
that we take its principal value.

Now that we have the rigorous solution of (12), we can
proceed with the derivation of the analytical expression for
the coupling coefficients A, , defined in (4). Recalling
(16), the relation between F,(an) and f;/(z), we can write

P, 20 F,(af)
sl o] e ]

where we have already used the changes of variables given
in (13) and (17).

To find an expression for constant C, in (15), can use
(24) and condition (9) imposed earlier on f,(z), obtaining

d¢  (24)

D,(1)

C2=_ D(l) (25)
where

7 d§

D n)—fAl r—%z 1+ ag)z] (26)
IV (af)

= 27
D)= flﬁ[mag)] )

Using now (15) through (27) we can write

fn[Stanfl(an ]
2a
[ D,(n)-

where the function D(n) is defined as

. " £d§
D(n) = = -
ffl - [1+(at)}

The final step is now to use (28) and (4), together with
the necessary changes of variables, to derive an expression

D,(1)

D, .
0 D(n)+ 3 D(n)| (28)

(29)

for the generic coupling matrix element A, . obtaining
A 2 a: D Df’ll D)I Dlﬂ Dn 30
= — -+ =
m,n 77_‘B m,h D D ( )
where
D=D(1) (31)
D,(1) (32)
1,§, (o)
D, 33
/ 1y1—7 1+(a’n)] (33)
1,5,2) an
B~ [ ) (34)
1y1—7? 1 +(am) “]
1 L7 (ma) LY (na
o= | : b )
-1yl—-9° [1+(om) ]
gh(af)
]( ) (36)

1
. lan) = fm(ag—)l]dé
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and the superscript * means complex conjugate. Note that
to obtain the expressions in (33), (34), and (35) we have
performed an inversion of the order of integration.

The expression for the coupling coefficients 4, , that
we have just derived can be written in a simpler form by
recalling that, since the structure under examination is
lossless, the coefficients A,, , must be imaginary. We can
therefore separate the real from the imaginary parts of the
terms inside the square brackets in (30), carry out the
algebralc operations, and retain only the resulting real part
since the coefficients D and D are real, and B is already
purely imaginary, as shown in (6). In addition to that, as
we show in Appendix 11, it is possible to separate IV (an)
and I®(am) into even and odd components, thus obtain-
ing a simpler final expression for 4, ,. Furthermore, if we

w
define the operator EL{ f(sin Ecj))} according to

o)

1+ =
o sin? 2(1)

o)y

] dg (37)

we finally obtain for 4,, , the expression

Qa 2

A [EL {12 il Bea

2 1
m,n 7B m,real” n,real -1 ) I() }

m,imag* n,imag

1 )
+3 —EL { I® e

VEL {1 3nes )

n,imag

1
+ }‘;EL{ Ir(nZ)real } EL{ Irflzeal }] (38)
where
o L [2 tan ! ( i )] (39)
moreal = T 5 S| 2m an” " al sin 2(1)
1 T
IP = —— tan‘la(sin —¢) (40)
a 2
1 a
I e =— cos {2m tan_lrx(sin ﬂ¢)} (41)
am 2
I s =0 (42)
T ‘ K
cos? 54/ cos [Zn tan~! ((xsm 5\[/)]
T o7
LT cos? 5 $cos [2n tan ! (asm E¢)]
1= — a4

-1 sinaxlz—siniqb

(43)
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S *—sinz 44
0,real 2¢ ( )

T T
cos? —2—¢ sin [Zn tan ! (asin -2—1[/)]
7 7
—cos? 59 sin {2?1 tan ! (asin —2—q5>] ;

1 1
Irgl)mag = ‘-‘/. T w '4/
274 $in —¢ —sin —¢
2 2

(45)

I(§,11)mag = 0 (46)

D= —0 (47)
vi+ a?

D= i (48)

The analytical details involved in the derivation of (39)
through (48) are reported in Appendix II.

The expression for 4, , given in (38) is therefore the
rigorous, analytical form of the generic element of the
multimode coupling matrices shown in Figs. 2 and 3. Note
that to obtain numerical values from (38) we need to
perform double integrations; they can be easily performed
to an arbitrary degree of accuracy using one of the many
numerical integration procedures that are available in the
literature. For all of the numerical results shown in the
next section, we have used a 96-point Gauss integration
procedure [5}].

IV. NUMERICAL RESULTS

The scattering problem studied in this paper has already
been investigated by many authors. As a result, there are
now available in the literature a number of alternative
solution procedures (for instance [2]-[15] of Part I [1]), and
some of these solutions do yield exact or very accurate
numerical results. The objective of this paper, however, is
not to present yet another solution to this scattering prob-
lem but to provide a novel rigorous multimode equivalent
network representation for the grating in Fig. 1. This goal
has already been achieved in the preceding section; how-
ever, for completeness we also include some of the scatter-
ing results obtained by using the novel equivalent networks
developed here.

Fig. 4 shows the result of the first numerical computa- -
tion, where the structure chosen is a self-reciprocal and
symmetric grating (a/p=0.5 and €V =¢% =10 in
Fig. 1) and the angle of incidence @ is equal to zero. The
quantity computed is the transmitted power in the lowest
mode (n =0 mode) versus the relative period p/A,, and
the incident wave is TE with respect to the x direction in
Fig. 1. The equivalent network used is the one shown in
Fig. 2. The result shown in Fig. 4 has been obtained
explicitly including in the multimode equivalent network
of the grating the n=0,+1, 42, +3, +4 modes. In the
frequency range between p/A,=0and p/A,=11n Fig. 4
only the n =0 mode is above cutoff in the x direction of
Fig. 1. At p/A,=1 the n = +1 modes begin to propagate,
at p/Ay=2 the n= £2 begin propagating, and so on to
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Fig. 4. Using the nigorous network shown in Fig. 2, we computed the
transmutted power in the lowest mode (n = 0 spectral order) versus the
relative period p/ A, for TE-mode incidence on the structure in Fig. 1
with a/p=05, V=€ =1, and §=0. In the computations we
included explicitly modes of order up to n= +4.
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Same as Fig. 4 but with the angle of incidence # equal to 15°

Fig. 5.
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Fig. 6. Same as Fig. 5 but with € = 2.0, and including explicitly in the
equivalent network in Fig. 2 modes of the order up to n = +6.

infinity. The general expression for the cutoff value of
P/ A, in relation to the order of mode » is given by

P n
i (49)
Ao + sinf —/el™

where the plus sign is to be used for n > 0 and the minus
sign for n < 0.

Changing the angle of incidence # to 15° and keeping
the rest unchanged, we have then obtained the result
shown in Fig. 5. Furthermore, for the same value of 8 but
with € = 2.0 we obtain the result shown in Fig. 6. In this
last case, due to the presence of the different dielectric on
one side of the grating, to adequately cover the same range
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Same as for Fig. 4 but for TM incidence. To obtain the results
shown we have used the network in Fig 3.

Fig. 7.
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Same as Fig. 5 but for TM incidence The network used 1s the
one in Fig. 3

Fig. 8.
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Fig. 9. Same as Fig. 6 but for TM 1ncidence The network used 1s the
one in Fig 3

of p/A, we have explicitly included in the network repre-
sentation of the grating transmission lines representing
modes up to the order n = +6.

In the next set of figures, namely Figs. 7, 8, and 9, we
have used the same structures as in Figs. 4, 5, and 6,
respectively, but for the case in which the incident plane
wave has the magnetic field in the y direction of Fig. 1
(TM case). The network used in this case is the one shown
in Fig. 3. Note that, as expected, the result shown in Fig. 7
appears to be exactly coincident with the rigorous result
given by Baldwin and Heins [6] for the same structure.

Another feature of the results shown that is worth
mentioning is that the results shown in Figs. 7 and 8 can
be obtained computing the reflected power on the lowest
mode for TE incidence instead of the transmitted power
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for TM incidence. This is a consequence of the duality
principle and it does not apply to the result shown in Fig.
9. Finally, note that in Fig. 9 we observe that the transmit-
ted power is less than unity in the limit of zero frequency.
This is due to the fact that for a TM wave the value of the
modal characteristic impedance changes as a function of
the dielectric constant €, even in the limit of zero fre-
quency. This, however, is not true for the TE case, as
indicated in Fig. 6.

V. CONCLUSIONS

We have derived here a novel analytical inversion for-
mula for Hilbert-type singular integral equations and rig-
orous multimode equivalent network representations for the
scattering problem posed by a plane wave incident on the
multimode, zero-thickness, metal-strip grating at a dielec-
tric interface shown in Fig. 1. Both TE- and TM-mode
excitations have been considered, thereby providing two
rigorous multimode equivalent network representations
that are valid at the same time for an arbitrary angle of
incidence, different media on each side of the grating, and
an arbitrary value of the relative aperture size a /p in Fig.
1. In addition to that, in the equivalent networks we have
developed we can include explicitly an arbitrary number of
propagating higher modes. Due to their generality, there-
fore, the equivalent networks developed are powerful tools
for the analysis of more complex structures that contain
the multimode metal strip grating shown in Fig. 1.

APPENDIX [

In this appendix we derive a novel inversion formula for
(12) that is valid for arbitrary values of the parameter b/p
that are less than unity. To do so, using the addition
formulas, we first rewrite the kernel of (12) in the form

a b T )
a b , cota;xcot——x +1
cotig(x—x)= i > (A1)
cot ——x'—cot——x
2p 2p
Next, we introduce the changes of variables
a b
tan — —x = a7 (A2)
p
7 b
tan ) ;x’ = ay’ (A3)
where
a b
a=tan - — (A4)
2p

Using now (Al) through (A4), we can rewrite (12) in the
form

e /2ntan”lom fl fn'(g tan"lom’)
1 T

Bp?| 1+ a*nyy | dv
202 [ 1+ (ay)® [n—7"

(A3)
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A key step toward the solution of (AS) is to rewrite the
term inside the square brackets in the form

1+ a2n,n/ a2n/
= ~ 7 A6
1+(an’)2 1+(om1’)2(n ) (A6)
so that we can write
1 1F(an) 1 o (an)
gu(an)=— [ —/
71 =7 1 1+(a11
(A7)
where
B 2
E(em) =gy | Zran a3 a)
T 20
g, (an) = e s2ntanten, (A9)

Note that the second integral on the right-hand side of
(A7) represents a constant. We can therefore define C, as

o? a 'k, (an’) F an
= f ' (A10)
1 1+ (om
and write (A7) in the form
1 o F(an)
gi(am)=C== [ Sdv. (A1l
mJo =

Equation (A11) is a standard Cauchy-type singular integral
equation of known solution [7]; we can therefore write

e

{g.(at)=C 1} dé

(A12)

1 1
E(an) = r—-“l_nz G+ ;](71

where the star on the integral sign means that we take its
principal value. To find an expression for the constant C;,
we now define the function 7{"(an) according to

y1- ¢

g,(a¢) dé
n

I (o) = %fl (A13)

-1 €

and rewrite (A12) in the form

p Y1-&2

W C Ly
-+ — —
CZ n (“TI) 1'77"{71 g_n

(A14)

F,(an) = de|.

1
V1—7?

The derivation of the integral on the right-hand side of
(A14) can be found in [7] (and from now on will be
assumed to be a known integral), so that we can write

(o) = e en) <Gl (419
We can now use (Al5) and (A10) to write
b,
C = B (A16)
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where
11, (an)
= Al7
fl\/l 1 [1+(an)] ( )
dn.  (A18)

i

Equation (Al5) is, therefore, the novel rigorous inversion
formula for the singular integral equation in (12).

APPENDIX 11

The integrations that need to be performed to obtain the
results shown in (39) through (48) are

()= f* :i ga)de  (A19)
[9(an) =fnl[—§%dg (A20)
~ T 1 712
Tl _-/;1 y1—7? [1+(om)2] dn (A2D)
- an (A22)
g e

The first integration, namely (A19), is more conveniently
carried out using a numerical rather than an analytical
procedure. The other three integrals, namely (A20), (A21),
and (A22), can be evaluated analytically. Before a numeri-
cal procedure can be applied to evaluate (A19), however, a
few analytical manipulations are necessary since the inte-
grand is singular for n=¢. Furthermore, the function
g,(an) defined in (19) can be divided into real and imagi-
nary parts. As a result, the evaluation of (A19) actually
involves the evaluation of two similar integrals; one for the
real part and one for the imaginary part. Taking as an
example the integration involving the real part, we first
write, for n # 0,
g —

="
(1—£ )cos [2nsin™!(af)]
=‘l~f1 — (1= 79?)cos [2nsin~" (an)]

cos [2nsin~1(aé)] d¢

dé
T W(f‘ﬂ)
+(1—n*)cos[2nsin~! (an)]
(A23)

f 11— S(é )

The second integral on the right-hand side of (A23) can be
found in [7] and is equal to zero for |n|<1. The first
integral on the right-hand side of (A23) is no longer
singular for 1 =§ and can now be evaluated numerically.
However, in view of the next integration required, namely
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(37), it 1s convenient to introduce the two changes of
variable

§=sin(g¢)

J— 1 77.
n——51n(—2~¢).

Using (A23), (A24), and (A25), we then obtain the expres-
sion shown in (43). Following a similar procedure we can
also obtain the expression for 1), a¢ Shown in (45). For the
case n =0 we have

(A24)

(A25)

(13% = -1 MI <1 (A26)
0.real = f 1 5 n
I(glzmag =0. (A27)

The subsequent use of the change of variables shown in
(A25) yields from (A26) the result shown in (44).

To show that I{).,, is an odd function and that 1) . is
an even function, let us define I(7) according to

I(n) =—71;f_1—“£$s dt.

Next, we rewrite (A28) in the form

(A28)

S V1§
k vrffx §—

(A29)

_l L _2g
1(77)*77 _11 13 :

Now, note that
& —
g —

— nil ék,nn~1~k
k=0

(A30)

so that
n—1 1 1 ]
I(U)z Z nn—l—k;/ 1 ]_gZ%/\dg_nn-*—l. (A31)
k=0 -

The integral on the right-hand side of (A31) is not equal to
zero only if k is even; therefore

(1~ 1)/2] 1 .
nn—l—Zk;'/ll - €22k g — 17n+1 (A32)

I(n)= X
k=0

where the square brackets on the upper Limit of the sum-
mation indicate the largest integer smaller than or equal to
(n—1)/2. It is now easy to see that if »n is even I(7) is an
odd function and if # is odd I(7) is an even function.
Since g,(an) in (Al9) can be expanded in a series of
powers of x, the above proves that I in (27) is even if
g,(an) 1s odd and 1s odd if g, (an) is even.

To carry out the integration in (A20) we only need to
operate the change of variables

an=tang¢ (A33)

that transforms (A20) into a known integral. Furthermore,
the constant terms that result from the integration in (A20)
cancel out when we carry out the algebraic operations
needed to go from (30) to (38), thereby giving the results
shown in (39) through (42).
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The integration to evaluate D in (A22) can be easily
carried out using the change of variables
n'=sin¢ (A34)

so that (A22) reduces to a known integral giving the result
shown in (47). For D in (A21) we can write

'2~ aZ 1 2

—D=1-— d
7TD 1 .‘77"/—1‘/1—1]2[1-{-(0(7))2] !

1 dy +l 1 dn
7Tf~1\/1¥nz "f~1\/1—n2[1+(0m)2]

(A35)

which is a sum of known integrals giving the result shown
in (48).
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