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Multimode Network Description of a Planar
Periodic Metal-Strip Grating

at a Dielectric Interface— Part III:
Rigorous Solution

MARCO GUGLIELMI AND HARRY HOCHSTADT

z

Abstract — In a recent pair of papers we studied the scattering problem

posed by a plane wave incident at an angle on a plane, periodic, metal-strip

grating at a dielectric interface. In the first paper (Part I) we formulated

tbe solution to the scattering problem in terms of nod multimode equioa-

kvrt KWUOA representations. The analytical phrasing followed in Part I led

to two Fredholm integral equations of the first kind with singular kernels.

In the second paper (Part If) we presented two approximate solution

procedures for those integral equations that led to four simple and accurate

equivalent network representations for the scattering problem under inves-

tigation. In this paper (Part 111) we further this investigation by deriving a

novel rigorous analytical solution for one of the two integral equations

derived in Part I. We obtain closed-form, rigorous, analytical expressions

for the elements involved in the equivalent network representations de-

rived. Finally, we present the results of a number of numerical computa-

tions carried out by using the rigorous equivalent networks developed.

I. INTRODUCTION

I

N A RECENT pair of papers [1], [2] we presented

novel small-aperture and small obstacle multimode

equivalent network representations for the scattering prob-

lem posed by a plane wave incident on the plane, periodic,

zero-thickness, metal-strip grating at a dielectric interface

shown in Fig. 1. The problem was posed for both TE and

TM incident modes and followed two different ap-

proaches, namely, the obstacle and the aperture approach,

thereby yielding four different formulations. Solutions were

first derived formally [1] in terms of shunt multimode

coupling networks containing a coupling matrix whose

generic elements Am, ~ were obtained, via an integral rela-

tion, from the solution of four integral equations. It was

further shown [1] that to solve all four problems we only

needed to solve two types of integral equations. These

integral equations were then solved in [2] in the small

argument limit, thereby giving four very accurate and

simple novel multimode equivalent network representa-

tions for the multimode grating under investigation.
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Fig 1. The structure under investigation is a zero-thickness metal-strip
grating at a plane dielectric interface. The excitation is a plane wave at

an angle; both TE and TM polarizations are considered, The ratio

between the period p and the wavelength A. of the incident plane
wave is such that higher propagating modes (spectral orders) must be

explicitly considered.

In this paper, we further this investigation by deriving a

novel rigorous analytical solution for one of the two inte-

gral equations derived in [1], thereby obtaining two rigor-

ous equivalent network representations for the multimode

grating at a dielectric interface shown in Fig. 1. We present

numerical results obtained by using these rigorous equiva-

lent network representations for TE-mode and TM-mode

incidence for the case in which the same dielectric is

present on both sides of the grating as well as for the case

in which the two dielectric media are different.
The rigorous results derived here, once employed in the

network formulation presented in [1], yield two rigorous

equivalent network representations. These networks, one

for TM-mode and the other for TE-mode incidence, are

valid for an arbitrary angle of incidence, an arbitrary value

of the relative aperture size a/p in Fig. 1, arbitrary values

of relative permittivity c, of the medium on each side of

the grating, and an arbitrary number of propagating higher

modes. They provide very general rigorous multimode

equivalent network representations for the plane, periodic,
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Fig. 2. Using the aperture formulation and TE-mode incident wave, we

derived in [1] this formaf network phrasing for the solution of the

scattering problem shown in Fig. 1

Y m,n

I

(1)

(2)

(3)

‘m,. =j~n(z)e’~’dz (4)

where the coupling coefficient Am, ~ represents Zn ~ in

Fig. 2 if the domain of integration D extends over the

aperture in Fig. 1 ( – a/2 < z < a/2) or represents Y.,,,, in

Fig. 3 if the domain of integration D extends over the

obstacle and the origin of the coordinate system is shifted

to the center of a metal strip so that – ( p – a )/2 < z <

(p – a)/2. Note that the element Y~,~) in (3) is the static

characteristic admittance for TE modes, as defined in [1,

eq. (4)]. The superscript (m) in (1) and (3) takes the value

1 or 2 to indicate the medium to the left of the grating or

the one to the right, respectively.

The unknown function ~n(z ) in (4) is specified via the

singular integral equation

‘D ?)2# o

where the same convention is used for the domain of

integration D, and the constant B is given by

y o
Fig. 3. Using the obstacle formulation and TM-mode incident wave,

derived in [1] this formaf network phrasing for the solution of

scattering problem shown in Fig. 1.

we

the

[

27r 1
for TM-mode excitation

jutop 6!) + t$~)
B=

[12m 1 1
— ~+~ for TE-mode excitation.
.i~Pop P, P,

metal-strip grating at a dielectric interface shown in Fig. 1.

The value of these equivalent network representations lies

in the fact that they can be used as constituent parts of

equivalent network representations of more complex struc-

tures containing gratings of the type shown in Fig. 1.

II. THE EQUIVALENT NETWORXS AND THE RELEVANT

SINGULAR INTEGRAL EQUATION

It is appropriate at this point to recall the results of the
formal rigorous network phrasing derived in [1] for the

scattering problem under investigation. In Figs. 2 and 3 we

show the equivalent network representations derived for

the cases of TE-mode incident wave and aperture formula-

tion and for TM-mode incident wave and obstacle formu-

lation, respectively. The quantities defined in Figs. 2 and 3

(6)

III. RIGOROUS ANALYTICAL EXPRESSIONS FOR THE

MULTIMODE COUPLING MATRIX COEFFICIENTS

To derive a rigorous analytical expression for Am, ~ in

(4) we must first solve the singular integral equation in (5).

To do so, we first rewrite its kernel in the form

2mn

K(z – z’) = lim ~ lrnle-al”’le-~~(=-”) (7). .
~-’’Jm#o

to aid in summing the kernel in closed form. This phrasing

is in principle equivalent to formulating the integral equa-

tion a small distance 8 away from the grating in the x

direction and then taking the limit for 8-0. Next, we

substitute (7) into (5) and, integrating by parts, obtain

. lim ~ ‘e-al”] ]e-]~(’-’’)dz’ (8)
;+0 nl+o m

together with the condition

tr(Ol=’=*b/2=o (9)
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where + b/2 are the end points of the domain of integra-

tion D previously defined. The kernel of (8) can now be

summed in closed form by recalling that [3]

Taking the limit for 8 ~ O we can finally express (8) in the

more convenient form

2n’
sin —(z– z’)

.-J:: =J:/J;(z): ,_ ~o:z(z_z ~ dz’. (11)
f

P

Next, using the double angle formulas, we rewrite (11) in

the form

where we have also used the changes of variables

b
.=. –x

2
(13)

(14)

Equation (12) is a singular integral equation of the Hilbert

type that has a known inversion formula only for the

special case b/p = 1.0 [4]. A new solution is, therefore,

needed in this case since b/p is less than unity. We refer

the reader to Appendix I for the mathematical details of

the derivation of the nouel rigorous solution of (12) and

present here only the final results by writing the solution

of (12) in the form

The constant Cz in (15) is an arbitrary constant to be

evaluated later. The star on the integral sign in (19) means

that we take its principal value.

Now that we have the rigorous solution of (12), we can

proceed with the derivation of the analytical expression for

the coupling coefficients Am,,1 defined in (4). Recalling

(16), the relation between Fm(aq) and ~~(z), we can write

2a q Fn(ag)
fn[~tan-’(~q)]=—f df (24)

pB -1 [l+(a&]

where we have already used the changes of variables given

in (13) and (17).

To find an expression for constant C2 in (15), can use

(24) and condition (9) imposed earlier on j.(z), obtaining

Dn(l)

“= – D(1)

where

(25)

(26)

Using now (15) through (27) we can write

-[

D,,(l) ‘,1 A
— ; Dn(q)– 1~D(q)+:D(q) (28)

where the function 5(q) is defined as

~[c2+Ij’’(aq)+c,n] (15)
( d.f

Z(W) = ~~ fi(q)=Jq (29)
-l f~[l+ (a@] “

where The final step is now to use (28) and (4), together with

the necessary changes of variables, to derive an expression

~,(aq) =j;[~tan -l(aq)]g (16) for the generic coupling matrix element A,,l, ,,, obtaining

rb
tan ——x=aq

2p
(17)

‘2a2

[

DW,D,, D),,D,,
A =— D,,, ,l–rn, n —+—

b 1

(30)
TB s D

g)](W)=e-J2”tan-’~7
A

cl=;

(20)

(21)

D= D(l) (31)

D,, = D,,(l) (32)

(36)
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and the superscript * means complex conjugate. Note that

to obtain the expressions in (33), (34), and (35) we have

performed an inversion of the order of integration.

The expression for the coupling coefficients Am, ~ that

we have just derived can be written in a simpler form by

recalling that, since the structure under examination is

lossless, the coefficients Am, ~ must be imaginary. We can

therefore separate the real from the imaginary parts of the

terms inside the square brackets in (30), carry out the

algebraic operations, and retai~ only the resulting real part

since the coefficients D and D are real, and B is already

purely imaginary, as shown in (6). In addition to that, as

we show in Appendix II, it is possible to separate ljl) (aq)

and ljz)( aq ) into even and odd components, thus obtain-

ing a simpler final expression for Am, ~. Furthermore, if we

define the operator EL{ j( sin ~q)} according to ‘

we finally obtain for An,. the expression

where

I~2;ed = –

Z&zsin[’mtan-’a(sina] ‘3’)
1

()
(40)1~2/e.1= – – tan-la sin ~ $

a

[ ‘l(asin~~)]COS2~+ cos 2n tan

11–

J

cos2~@cos[2ntan-l(asin~@j]
.—

2 -1 sin~$–sin~$

d+

(43)

cos2;+sin[2~tan-’(~

(47)

(48)

The analytical details involved in the derivation of (39)

through (48) are reported in Appendix II.

The expression for Am, ~ given in (38) is therefore the

rigorous, analytical form of the generic element of the

multimode coupling matrices shown in Figs. 2 and 3. Note

that to obtain numerical values from (38) we need to

perform double integrations; they can be easily performed

to an arbitrary degree of accuracy using one of the many

numerical integration procedures that are available in the

literature. For all of the numerical results shown in the

next section, we have used a 96-point Gauss integration

procedure [5].

IV. NUMERICAL RESULTS

The scattering problem studied in this paper has already

been investigated by many authors. As a result, there are

now available in the literature a number of alternative

solution procedures (for instance [2]–[15] of Part I [1]), and

some of these solutions do yield exact or very accurate

numerical results. The objective of this paper, however, is

not to present yet another solution to this scattering prob-

lem but to provide a novel rigorous multimode equivalent

network representation for the grating in Fig. 1. This goal

has already been achieved in the preceding section; how-

ever, for completeness we also include some of the scatter-

ing results obtained by using the novel equivalent networks

developed here.

Fig. 4 shows the result of the first numerical computa-

tion, where the structure chosen is a self-reciprocal and

symmetric grating (a/p = 0.5 and Cjl) = c~2)= 1.0 in

Fig. 1) and the angle of incidence 6’ is equal to zero. The

quantity computed is the transmitted power in the lowest

mode (n = O mode) versus the relative period p/A ~, and

the incident wave is TE with respect to the x direction in

Fig. 1. The equivalent network used is the one shown in

Fig. 2. The result shown in Fig. 4 has been obtained

explicitly including in the multimode equivalent network

of the grating the n = O, t 1, +2, ~ 3, + 4 modes. In the

frequency range between p/AO = O and p/AO = 1 in Fig. 4

only the n = O mode is above cutoff in the x direction of

Fig. 1. At p/AO = 1 the n = + 1 modes begin to propagate,

at p/AO = 2 the n = ~ 2 begin propagating, and so on to
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Fig. 4. Using the rigorous network shown in Fig. 2, we computed the

transmitted power in the lowest mode (n = O spectral order) versus the
relative period p/A. for TE-mode incidence on the structure in Fig. 1

with a/p = 0.5, C$l)= c~2)=1, and 8 = O. In the computations we

included explicitly modes of order up to n = +4.

Q

y 0.5
+

TE-tl130E lNCIOENCE

“ o.o~

0.0 1.0 2.0 3.0 Y.o
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Fig. 5. Same as Fig. 4 but with the angle of incidence 9 equal to 15°
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/ I ! I
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Fig. 6. Same as Fig. 5 but with c~2)= 2.0, and including explicitly in the

equivalent network in Fig. 2 modes of the order up to n = +6,

infinity. The general expression for the cutoff value of

P/A. in relation to theorder ofmode n is givenby

P +-n

Ao=–
(49)

&sinf3-~

where the plus sign is to be used for n>O and the minus

sign for n <0.

Changing the angle of incidence 0 to 15° and keeping

the rest unchanged, we have then obtained the result

shown in Fig. 5. Furthermore, for the same value of 6’ but

with c~z)= 2.0 we obtain the result shown in Fig. 6. In this

last case, due to the presence of the different dielectric on

one side of the grating, to adequately cover the same range

1.0
K
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CL
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w
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%
z
a
a

* 0.0 I I I

0.0 1.0 2.0 3.0 U.o

RELFITIVE PERI13D (PERI13D/WflVELENGTHl

Fig. 7. Same as for Fig. 4 but for TMincldence. Toobtain the results

1.0
m
w
3
D
L
n
: 0.5
1-

x
(n
z
u
K

* 0.0

shown wehaveused thenetwork in Fig 3.

TM-M130E1NC1OENCE

I I I

0.0 1.0 2.0 3.0 u. o
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FE. 8. Same as FM. 5 but for TMincldence The network usedls the
onein Fig. 3

TM-PKIOEIN C1OENCE

0.0 1.0 2.0 3.0 U.o

RELRTIVE PERI13D (PERI13D/WflVELENGTH)

Fig, 9. Same as Fig. 6 but for TM incidence The network u>ed IS the

one in Fig 3

ofp/Aowehave explicitly included in the network repre-

sentation of the grating transmission lines representing

modes up to the order n= +6.

In the next set of figures, namely Figs. 7, 8, and 9, we

have used the same structures as in Figs. 4, 5, and 6,

respectively, but for the case in which the incident plane

wave has the magnetic field in the y direction of Fig. 1

(TM case). The network used in this case is the one shown

in Fig. 3. Note that, as expected, the result shown in Fig. 7

appears to be exactly coincident with the rigorous result

given by Baldwin and Heins [6] for the same structure.

Another feature of the results shown that is worth

mentioning is that the results shown in Figs. 7 and 8 can

be obtained computing the reflected power on the lowest

mode for TE incidence instead of the transmitted power
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for TM incidence. This is “a consequence of the duality

principle and it does not apply to the result shown in Fig.

9. Finally, note that in Fig. 9 we observe that the transmit-

ted power is less than unity in the limit of zero frequency.

This is due to the fact that for a TM wave the value of the

modal characteristic impedance changes as a function of

the dielectric constant ●, even in the limit of zero fre-

quency. This, however, is not true for the TE case, as

indicated in Fig. 6.

V. CONCLUSIONS

We have derived here a novel analytical inversion for-

mula for Hilbert-type singular integral equations and rig-

orous multimode equivalent network representations for the

scattering problem posed by a plane wave incident on the

multimode, zero-thickness, metal-strip grating at a dielec-

tric interface shown in Fig. 1. Both TE- and TM-mode

excitations have been considered, thereby providing two

rigorous multimode equivalent network representations

that are valid at the same time for an arbitrary angle of

incidence, different media on each side of the grating, and

an arbitrary value of the relative aperture size a/p in Fig.

1. In addition to that, in the equivalent networks we have

developed we can include explicitly an arbitrary number of

propagating higher modes. Due to their generality, there-

fore, the equivalent networks developed are powerful tools

for the analysis of more complex structures that contain

the multimode metal strip grating shown in Fig. 1.

APPENDIX I

In this appendix we derive a novel inversion formula for

(12) that is valid for arbitrary values of the parameter b/p

that are less than unity. To do so, using the addition

formulas, we first rewrite the kernel of (12) in the form

cot— —xCot — —X’+1
2p 2p

cot:~(x–x’)= *b
2p nb

cot ——x’–cot ——x
2p 2p

Next, we introduce the changes of variables

n-b

‘an5 ;X =aq
vb

‘an 5 ;X’= aq’

where

wb
a=tan ——.

2p

(Al)

(A2)

(A3)

(A4)

Using now (Al) through (A4), we can rewrite (12) in the

form

1
–’w =

, <tan_l
e–lzntm Jf( aq’

–1” ~ )

Bp2 [11 + azqq’ drf
.— — (A5)

2m2 l+(a7J’)2 q–q’”

A key step toward the solution of (A5) is to rewrite the

term inside the square brackets in the form

1 + azqq’
=1+ “q’, 2(~-T’) (A6)

l+((XTJ’)2 l+(aq)

so that we can write

(A7)

where

[ 1
Bp2

~n(W) ‘L’ ‘tan -l(aq) —
271

(A8)
T

Note that the second integral on the right-hand side of

(A7) represents a constant. We can therefore define Cl as

and write (A7) in the form

Equation (All) is a standard Cauchy-type singular integral

equation of known solution [7]; we can therefore write

(A12)

where the star on the integral sign means that we take its

principal value. To find an expression for the constant Cl,

we now define the function ljl) ( aTJ) according to

and rewrite (A12) in the form

(A14)

The derivation of the integral on the right-hand side of

(A14) can be found in [7] (and from now on will be

assumed to be a known integral), so that we can write

We can now use (A15) and (A1O) to write

(A16)
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i5=:-J1 T2
dq. (A18)

-1/~[l+(a7J)2]

Equation (A15) is, therefore, the nouel rigorous inversion

formula for the singular integral equation in (12).

APPENDIX II

The integrations that need to be performed to obtain the

results shown in (39) through (48) are

(A20)

J
dq

(A22)
‘= :l/m[l+(aT)~] “

The first integration, namely (A19), is more conveniently

carried out using a numerical rather than an analytical

procedure. The other three integrals, namely (A20), (A21),

and (A22), can be evaluated analytically. Before a numeri-

cal procedure can be applied to evaluate (A19), however, a

few analytical manipulations are necessary since the inte-

grand is singular for q =$. Furthermore, the function

g.( aq ) defined in (19) can be divided into real and imagi-

nary parts. As a result, the evaluation of (A19) actually

involves the evaluation of two similar integrals; one for the

real part and one for the imaginary part. Taking as an

example the integration involving the real part, we first

write, for n # O,

(1-&2 )cos[2nsin-’(a&)]

1 1 –(l–qz)cos [2nsin-l(aq)]
— —

T-J –1 m(c-~) ‘g

+(1–q2)cos [2nsin-l(aq)]

The second integral on the right-hand side of (A23) can be

found in [7] and is equal to zero for ]q I <1. The first

integral on the right-hand side of (A23) is no longer

singular for q = & and can now be evaluated numerically.

However, in view of the next integration required, namely

(37), it is convenient to introduce the two changes of

variable

(A24)

(1v=sin~+. (A25)

Using (A23), (A24J and (A25), we then obtain the expres-

sion shown in (43). Following a similar procedure we can

also obtain the expression for l~!j~a~ shown in (45). For the

case n = O we have

(A27)

The subsequent use of the change of variables shown in

(A25) yields from (A26) the result shown in (44).

To show that l~~).a is an odd function and that Ij~~magis
an even function, let us define 1(q) according to

Next, we rewrite (A28) in the form

(A29)

Now, note that

so that

The integral on the right-hand side of (A31 ) is not equal to

zero only if k is even; therefore

where the square brackets on the upper limit of the sum-

mation indicate the largest integer smaller than or equal to

(n – 1)/2. It is now easy to see that if n is even I(q) is an

odd function and if n is odd 1(q) is an even function.

Since gn( aq) in (A19) can be expanded in a series of
powers of x, the above proves that Ijl) in (27) is even if

g.(q) is odd and is odd if g,,(q) is even.
To carry out the integration in (A20) we only need to

operate the change of variables

q = tan$ (A33)

that transforms (A20) into a known integral. Furthermore,

the constant terms that result from the integration in (A20)

cancel out when we carry out the algebraic operations

needed to go from (30) to (38), thereby giving the results

shown in (39) through (42).
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The integration to evaluate D in (A22) can be easily

carried out using the change of variables

q=sinrp (A34)

so that (A22) reduces to a known integral giving the result

shown in (47). For b in (A21) we can write

which is a sum of known integrals giving the result shown

in (48).
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